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On some inequalit ies and their application t o  the Cauchy problem 

by 
Avner Friedman 

I. Two inequalit ies _-______-_----- 
Let A be a bounded operator in a complex Banach space X, and denote 

by b(A) the spectrum of A and by R(h;A) i t s  resolvent ( A I -  A)-’. 

&s analyt ic  on b ( A ) ,  i a e e 9  i n  some neighborhood W of d ( A ) ,  then f ( A )  is 

defined by [ ljp.5681 

(1.1) 

where I? is a contour lying I n  W\d(A). 

pansion C am” which converges i n  W then f ( A )  = C .,A”. 
IlAll the norm of A. 

e ra tor  i n  the complex N-dfnensisnal euclidean space. 

If f 

f (A)  = &Jr f ( A ) R ( A j A ) d h  

If f ( z )  has a Taylor ser ies  ex- 
m We denote by 

If A is an N x N matrix then we consider it as an o p  

Eisst_ln~~ud=it!y.  Let A be an N x N matrix and l e t  f be an analytic 

function on d ( A )  having a Taylor se r ies  expansion about 1; = 0 which con- 

verges in a neighborhood W of G ( A ) .  

----_---_---- 

Then 

where H ( A )  is the convex hiaL of  the eigenvalues of A. 

This result is due t o  Gelfand and ShiPov [ 3 ] .  

We s h a l l  now derive, by a different  method, an inequality of the 

same nature as (1.2), namely: there i s  a constant C depending only on N ,  

such that, f o r  any suff ic ient ly  small, 

where d 6 ( A )  = {hjdist.(h,b(A)) < 6); 6 is r e s t r i c t ed  only by the r eq2re -  I 
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ments t h a t  d 6 ( A )  C W and tha t  6 5 1. 

Proof of (1.31. We employ (1.1) and shrink r t o  a contour B which, , 

a f t e r  cancelling out integrals  on the same arcs but i n  reverse orienta- 

tions, has length 5 C ' 6  ( C '  depending only on N )  and is such that 

\A- A .  .= 6 f o r  any eigenvalue h j  of A and f o r  a l l  h i n  the uncanceiled 
3 

par t  B t  of B. Then Idet(h1-A)( = l(A-Al)al-..(A-$) ak I 2 6 -N on €3'. 

Noting that l A l  5 IlAll + 

C " ( 1 +  llAll> 

6 llAll + 1 on B', we ge t  llR(h;A) 11 5 
N-1 -N 6 on BI (C" depending o n l y  on N), and (1.3) follows. 

Semnrl_bewkx. -_-__----- Consider a polynomial equation 
N N-1  + (1.4) h + P1:s)h . .e + PN(S) = 0 

where P,(s) are polynomials of degree p,. i n  the n-dimensional complex 
J J 

variable s = (sl, e . e J S n ) ,  and s e t  p = m a  x Denote by 
1 5 j i N  j *  

Then, - 

(1.5) 

A s l igh t ly  weaker result,, nm&y, r(r) = O ( r  P I'(rm) 2 v PG f o r  scam 
fi 

y > 0, rm i a3 and I' = I^J$! kiss i;;pc:ed by Geefand and Shilolt- [ 3 ] ,  but 

there fs some gap i n  the i r  proof; tMs fs f ixed up in [2], where also 

the more general version (1,,5) is given. 

2,TheCauchy_ErGbla --------- 

(2.1) a t  

Consider the problem of finding a f'unction u sat isfying 

( 0  < t i  T, x E Rn), au - a  - = P(d-1 G'U 



(u is t o  be continuous f o r  0 5 t .( T, x F Rn> where Rn is the r e d  n- 

dimensional euclidean space, u = (ul, , uo - - (uol,. . ,uoN), P(s) 

is a n  N x N matrix whose elements are polynomials of degree p i n  s = 

dependent of t, but a l l  the resul ts  of this work extend t o  the case where 

solve it we first  

The system (2.11, (2.2) is called a Cauchy system. 

take, formally, the Fourier transform, and get  

To 

5 = P(6)v, 

V b , O )  = vo(b), 

at 

whose formal solution is given by e tP(d)v (d) (6 E Rn>,  and then we have 

t o  analyze the inverse transform, which should yield a solution of (2.1), 

(2.2). 

procedure is needed, which employs certain topological spaces and t h e i r  

conjugate spaces; fo r  de ta i l s  the reader i s  referred t o  c2],[3]. 

0 

Actually, this procedure is t o o  crude and a more sophisticated 

One concludes t h a t  uniqueness holds under the assumption that 

(2e5) \u(x,t)l I B expiplxt') for  0 5 t < 
where B,j3 are positive c o n s t a t j ,  -+ = 1 and p is defhed  8 2  in 82, 

where (1.4) is the characterTstfc equation fo r  P ( s ) .  
0 Po 

tY+(d), ( 0 )  1s & SF;?-'- 
0 

In  proving this r e su l t  one has t o  show tha t  e 

t i o n  of (2.3) ,(204) with P replaced by ?* (F 

"W space" of en t i r e  functions. 

(2.6) 

where C,c are positive constants. 

substantfal  manner the inequality (2,6), which in turn follows f r o m  the 

two inequal i t ies  of 81. 

transpose of p) in some 

T h i s  proof is  based upon the bmmd 

11 etP's)ll 5 c ( 1 *  I s I 1 (N-l)p exp( c t  1s 1'0) 

Thus the uniqueness proof employs 21: a 

To prove existence one f i r s t  reduces the problem (up t o  some SN, 1 t ine  
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estimates of integrals) t o  the problem of studying the inverse Fourier 

transform of e Next, a be t te r  

inequality than (2,6) is needed, but only f o r  s = d real. One assumes 

that 

(i,e , Green’s function) ; see [ 21. 

(2*7) A(6) y \ ~ \ ~  + 6 

and, depending on y,h one obtains different  bounds on e tP(d) and on. :fts 

derivatives, and thus different  structures f o r  Green’s function. If y< 0, 

0 < h 

(2.1) , (2*2), and t h a t  it sa t i s f i e s  (2.5) , provided uo and some of its 

derivatives have a t  most an exponential growth; if h = po it suffices t o  

po then one can prove that there ex is t s  a c lass ica l  solution of 

9 
assume that u,(x) is continuous and is  O[exp(P \x\‘)] where 0 < 8 < P T -V&-Q 

0 

Bo depending only  on P. 

made on u (see [2],[3]). 

The Goursat problem 

If y 2 0, then more r e s t r i c t ive  assumptions are 

0 

(2.8) 

A. 

can be handled along the same lines (see [2]). Instead of e tP(s)  7& 

cx) 
have t o  deal with (P (~ ) )~ / (mg) ’~  Uniqueness holds under the assmp- 

tic= (2,5) where 1 + 2! = 1, Existence theorem can a l so  be deriveii., but 

there i s  a remarkable difference between the case 3 =  2 where so1utio:ns 

m-0 

q Po 

exist under “reasonable” conditions on uo (i.e., a finite number of deriv- 

a t ives  of uo are assumed t o  ex is t  and t o  be bounded by O()xly) f o r  saxe y) 

and on the eigenvalues of P(d) , and the case 3 > 2 where very restr5:t.Y 

assumptions on uo are  required. 

LAddlifiieD;11 p----I_--- -b e g u u -  --- 

We shall consider some generalizations of the first inequa1it.y e Z  81 
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t o  general bounded operators A. 

substant ia l ly  used i n  B4* 

Ecps ik iml .  --_--- 

The last result of t h i s  section w i l l  be 

If IlAll < r and f is  analyt ic  i n  Ihl 2 r, then 

(3.1) 

This follows from (1.1) upon using Neumann’s ser ies  for  R(h;A). A 

be t t e r  result holds i n  Hilbert  spaces (but is  false in Banach spaces!) : 

Z q a s ; i & i o n .  I ---- Let A be a bounded operator in a H i l b e r t  space X 

and l e t  f be an analytic f’unction in ( A  I A IIAlI. Then 

(3.2) 

T h i s  r e s u l t  i s  due t o  von Neumann [SI ;  a simpler proof was given by 

It is  a l s o  proved i n  [ 5 ]  (and i n  [A]) t h a t  E, Heinz [4] (see a lso  [ 6 ] ) ,  

if  

(3.3) Re(Arp,cp) 2 0 fo r  all cp E X 

then ( A -  I)(A+ I)-’ edsts  and has a norm < 1, Employing Proposition 2, 

one gets: 

- P r z o s i t i o n  -__----- 3 ,  Let A be a bounded operator i n  a Hilbert space X -_--__- 
and assume tha t  it s a t i s f i e s  (303) . If f i s  an ent i re  funct io :n  thm 

(3.4) 

4 .  The Cauchy problem fo r  h f k i t e  systems 

We shall extend the results of 82 t o  an i n f in i t e  system of scpiations, 

i.e. , 
(4.1) 

(4.2) Ui(X,0) = UoJX) (i = 1,2?.,.), 

A t  this point we have t o  introduce the space WPyb  which occurs h 
P ,a 

the case of f i n i t e  systems. W P b  ’ is a Frdchet space whose element,s ai- 
P ,“ 
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b e  

I those entire functions f ( z )  (Z = ( Z ~ , * . ~ , Z ~ ) )  sat isfying 

I f o r  all at < a, b' > b where C t  is a constant depending on a',b' ,f.  The 

, metric i s  given by a sequence of n o m  Ilfll = sup Mj(z)lqdz)l ( j  = 1 , 2 , 0 b e )  

where M (z) = a ( l  - T ')Ap - b(1 + +)lSllp ; Le., 
j 

I j J P  J P  

In the case of 

w where W = 
3' j 

&reC.E product 

(4.3) 

82 the component u i s  considered as a f'unctional over 

W p y b  f o r  all j ,  
j 

In the present case m introduce the 
P ,a 

8 W j  , and the metric 

here 'p = (tp1,'p2,..*),$= ($l,$2,.a.). The elenents cp with I\cp() < a, for  

j = 1,2,... form a F d c h e t  space W 
j 

AP,b 
P,a' 

Assume now t h a t  
OD 

\pij(s)I I; n i j ( l +  \sip), vis constants, sup 2 rn 5 y < a. 
In  order t o  prove uniqueness fo r  (4.1) ,(4.2) , we proceed as i n  the 

i j  (4.4) 
i j=1 

case of f i n i t e  systems and thus reduce the problem t o  showing t ha t  

tP*(d I-,. I d  1 tpid,tj = e (rh c ;pya IYC = transpose of P) 
lyOW 1 'To p,b? 

i s  a solution i n  W Ap,b+c ( f o r  some c < a) of 
P+-C 

(4.5) &k a t  = P*(d)$, W , O )  = $o* 

(It is actually enough t o  consider $o with a l l  but one component equal 

t o  zero1) 

Since 



4 it follows that P* i s  a bounded operator i n  Next, P,8' 

and WB thus f ind tha t  $(s,t) is in ip,b+c f o r  some c < a (depending on 

y,T). 

(compare [ 21) . 
_I--- Theorem 1. 

a of (4.1) , (4.2) g a t i s f v u  

P ,a* 
The proof that $(d,t) satisfies (4.5) follows without d i f f icu l ty  

We thus obtain the following uniqueness theorem: 

a (4.4) holds then there exists & n o s t  class i c a i  g&p _-_--- 

(4.6) 

Consider now the question of existence. A s  i n  the case of a f ini te  

system, a "generalized solution" always exis t s ,  and we wish t o  prove tha t  

it i s  a l s o  a solution in the classical  sense. 

some d i f f e ren t i ab i l i t y  ad. bmdedness assumptions on uo(x) and dlsa put 

some conditions ori P(d).  Ilz the f f n i t e  case we impose conditions on the 

eigenvalues bib) of P(d). I n  the present i n f in i t e  case we give a dif- 

fe ren t  Mnd of condition on P(d) which ~3.11 turn aut t o  have the same 

e f f ec t  as i n  the f i n i t e  case. 

For this we need t o  make 

2 We wish t o  consider e t P ( 4  as a bounded operator i n  & . We thus 
2 need t o  know that P(d) is a bounded operator In & 

t o  assume that 

For this it s d f i c e s  
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We now impose the following condition: For any d E Rn, 

(C > 0 ,  0 < h s  p) (4.9) 

where (v,w) = Z v.w.. 

par t ,  then this condition is known as the s t r o w  e l l i r h i c i t v  conditiog 

f o r  P. 

Re(P(dv,v) i ( - C b l  h + c,)(v,v) 
- 

If h = p, C1 = 0 and P is equal t o  i ts  principal 
1 1  

Using (4.9) and applying Proposition 3,  we deduce: 

(4.10) 

2 is  considered as an operator in 3 . Thus, i n  par t icular ,  tm) where e 

Using this bound one can now analyze Green's function G(x,t) (Le . ,  

the inverse Fourier transform of e tP(d)) and then the abstract  convolution 

G(x,t) * u,(x) m 

and w e  obtain analogous existence theorems. 

T h i s  is  done along the same l ines  as fo r  f i n i t e  systems, 

The cases where C =O, C < 0 

can be t rea ted  i n  a similar manner. 

are  thus obtained (one could easi ly  write down a l l  the other existence 

theorems, by following the arguments f o r  f i n i t e  systems) : 

gheorem ----e 2. 

yhose comDonents satisfv 

We l i s t  below j u s t  two results which 

h = p U (4.9) then f o r  continuo% functiog u,ix) 

(4.12) 

(Yo dewn dins o n l y  P) ,  there 

(A02)  satisfvinc' (4.6) f o r  some 

& jf f o r  some V k  0, y > 0 first 

continuou s functions satisfvinp 

(4.13) 



If p = 1 and C = 0 i n  (4.9) then we have the same si tuat ion as i n  

the f i n i t e  hyperbolic case, where Green's function has a compact support. 

The norms and metric in (403) were chosen qui te  a rb i t ra r i ly ;  other 

definit ions can be made and we then obtain variants of the previous 

resul ts .  

suplbiIlj a.nd then modify (4.4) by replacing the last condition by 

Thus i f  we modify the definit ion (4.3) by se t t ing  llyll. = 
J 

i 

then Theorem 1 remains t rue i f  in (4.6) C is replaced by ci and z ci < 03. 

We f ina l ly  wish t o  observe that our results do not yield anything 

new in the case of f i n i t e  systems. 

the condition (2.7) with y = -C. 

equality 

(4.15) e tA(d) ~l,tPb)il 

(as e 

(4.15) we a i s 0  get: 

In  f a c t ,  the condition (4.9) implies 

T h i s  follows from the obvious in- 

are the eigenvdlues of e tP(6)) and (&lo)* From (40SO>, 
Mi(4 

C _ X Q U ~ .  

the sense nf Petrowski, (Le., h = po = p; see c21). 

If P & stro- e l l ivb ic  then au/at  = RI & pasa bolic & ---- 
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